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1. Introduction

In [4], Ganter and Wille introduce a framework for the analysis of data via lattice-
theoretic techniques. The basic notion is that of a formal context which consists
of two sets, a set of objects and a set of attributes, and a binary relation between
objects and attributes. The Galois connection naturally arising from this binary
relation is considered and a formal analysis of the lattice structures of the lattices
of the closed sets of this connection, so-called formal concepts, is carried out. Many
constructions are provided which are inspired by the use of the framework for data
analysis.

This setting has been generalized in [3] to cover the case of three sets, the sets
of objects, attributes and conditions, and a ternary relation between them that form
a triadic context. In a way similar to the binary case, one may consider the triadic
concepts of this triadic context. Out of combining two of the objects, attributes and
conditions in various ways, several binary formal contexts also arise. The relations
of these with the triadic concepts is studied and a construction for obtaining triadic
concepts out of the dyadic formal concepts of these binary contexts, induced by a
given triadic context, is also given.

In the same paper, the notion of a complete trilattice is introduced as a poset-
theoretic construct and it is shown that the posets of the triadic concepts of a triadic
context form naturally a complete trilattice in this abstract sense. The Basic The-
orem of Triadic Concept Analysis gives necessary and sufficient conditions for a
complete trilattice to be representable as the concept trilattice of a triadic context.

� This research was partially supported by a grant from the U.S. Department of Defense.
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In this paper, the framework, the constructs and the results of Wille [3] are
generalized to n-adic contexts. For n = 2 and 3, the formal contexts and the triadic
contexts, respectively, are obtained and the results specialize exactly to the known
results from formal concept analysis on dyadic and triadic contexts, respectively.

2. n-Adic Concepts

Fix a natural number n ≥ 2 and denote by n the set n = {1, 2, . . . , n}.
An n-adic context is an (n + 1)-tuple K = (K1,K2, . . . , Kn, Y ), where

K1, . . . , Kn are sets and Y an n-ary relation between K1, . . . , Kn.
An n-adic context gives rise to (Stirling number of the second kind) S(n, k) =

1
k!

∑k
i=0(−1)i

(
k

i

)
(k − i)n many k-adic contexts, 2 ≤ k ≤ n, which are in 1-1

correspondence with the possible ways of placing n distinguishable objects to k

indistinguishable boxes with at least one object placed in each box (see [2], sec-
tion 8.2). Such placements will be called partitions in the sequel. The k-adic con-
text corresponding to the partition π = (π1, π2, . . . , πk) is denoted by K

(π) =
(
∏

i∈π1
Ki, . . . ,

∏
i∈πk Ki, Y

(π)) with

(a(1), . . . , a(k)) ∈ Y (π) iff (a1, . . . , an) ∈ Y ,

for all a(j) ∈
∏
i∈πj

Ki, 1 ≤ j ≤ k,

where ai = a
(j)

i , for all 1 ≤ i ≤ n, 1 ≤ j ≤ k, such that i ∈ πj .
In what follows, given a subset I ⊆ n, denote by I ′ = n − I and, given sets

Ki, i ∈ I , and elements ai ∈ Ki, i ∈ I , use the notation aI = 〈ai : i ∈ I 〉 and
KI = 〈Ki : i ∈ I 〉. By slightly abusing notation, when no confusion is likely to
occur, the notation i and i′ will be used in place of {i} and {i}′, respectively.

Now suppose that I ⊆ n and Ai ⊆ Ki , for all i ∈ I . Define the |I ′|-adic context
determined by the Ai’s, denoted K

I ′
AI

= (KI ′, Y I ′
AI
), such that, for all aI ′ ∈ KI ′ ,

aI ′ ∈ Y I ′
AI

iff for all aI ∈ AI , an ∈ Y.

With every dyadic context corresponding to a binary partition π = (π1, π2)

there are associated derivation operators Z �→ Z(π) and with every 2-index subset
I = {i, j} and subsets Ak ⊆ Kk, k ∈ I ′, derivation operators Z �→ Z(i,j,AI ′ ). These
derivations are defined by considering the dyadic concepts K

(π) and K
I
AI ′ , respec-

tively, that were defined above, and taking their derivation operators as defined
in dyadic concept analysis. Many more derivation operations are obtained in the
n-adic case (n ≥ 3), by combining these two kinds. For instance, if π = (π1, π2),
with i ∈ π1 and π1 − {i} �= ∅, then Z �→ Z(π1−{i},π2,Ai) is a derivation that results
by considering the dyadic context K

i′(π1−{i},π2)

Ai
. Also note that the two construc-

tions above allow us, for any pair of nonempty index sets I, J , with I ∩ J = ∅,
(I ∪ J )′ �= ∅, and subsets Ak ⊆ Kk, k ∈ (I ∪ J )′, to define derivation operators
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Z �→ Z(I,J,A(I∪J )′). These are binary derivation operators on the dyadic context
(KI∪J

A(I∪J )′ )
(I,J ). In this case, when an |I |-tuple or a |J |-tuple of sets appears in place

of the place-holder Z, it will be taken to denote the direct product of the sets in the
tuple.

An n-adic concept of K = (K1, . . . , Kn, Y ) is an n-tuple (A1, . . . , An) with
Ai ⊆ Ki, i = 1, 2, . . . , n, and Ai = A

(i,i′)
i′ , for all i = 1, . . . , n.

PROPOSITION 1. The n-adic concepts of an n-adic context (K1, . . . , Kn, Y )

are exactly the maximal n-tuples (A1, . . . , An) in P (K1) × · · · × P (Kn) with
A1 × · · · × An ⊆ Y with respect to component-wise set inclusion.

Proof. For Ai ⊆ Bi ⊆ Ki, 1 ≤ i ≤ n, B1 × · · · × Bn ⊆ Y implies that
Bi ⊆ A

(i,i′)
i′ , for all i = 1, . . . , n, which proves the assertion. ✷

The collection C(K) of all n-adic concepts of the n-adic context K = (K1, . . . ,

Kn, Y ) is quasi-ordered by the quasi-orders �i , 1 ≤ i ≤ n, defined by

(A1, . . . , An) �i (B1, . . . , Bn) iff Ai ⊆ Bi.

By ∼i , 1 ≤ i ≤ n, are denoted the induced equivalence relations, defined by

(A1, . . . , An) ∼i (B1, . . . , Bn) iff Ai = Bi, i = 1, 2, . . . , n,

and by [(A1, . . . , An)]i the equivalence class of ∼i represented by the concept
(A1, . . . , An). Then �i induces a partial ordering ≤i on C(K)/∼i.

PROPOSITION 2. Suppose that i ∈ n and that, for all j �= i, (A1, . . . , An) �j

(B1, . . . , Bn). Then (A1, . . . , An) �i (B1, . . . , Bn), for all n-adic concepts
(A1, . . . , An), (B1, . . ., Bn) of K. Furthermore,

⋂
j �=i ∼j = �C(K).

Proof. (A1, . . . , An) �j (B1, . . . , Bn) means Aj ⊆ Bj, j �= i. Hence Ai′ ⊆
Bi′ with component-wise inclusion, whence Ai = A

(i,i′)
i′ ⊇ B

(i,i′)
i′ = Bi . Thus

(A1, . . . , An) �i (B1, . . . , Bn). For the second statement Ai = A
(i,i′)
i′ , whence, if

Aj = Bj , for all j �= i, then Ai = Bi and, therefore,
⋂

j �=i ∼j = �C(K). ✷
PROPOSITION 3. Let {j1, . . . , jn} = n and Xi ⊆ Ki, i �= jn. Define

Ajn = X
(jn,jn−1,X{jn,jn−1}′ )
jn−1

, (1)

Ajn−1 = A
(jn,jn−1,X{jn,jn−1}′ )
jn

, (2)

Ajn−2 = A
({jn,jn−1},jn−2,X{jn,jn−1 ,jn−2}′ )
{jn,jn−1} , (3)

...

Ajk = A
({jn,jn−1,...,jk+1},jk ,X{j1 ,...,jk−1})
{jn,jn−1,...,jk+1} (4)

...

Aj1 = A
({jn,...,j2},j1)

{jn,...,j2} . (5)
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Then (A1, . . . , An) is the n-adic concept bjn−1,...,j1(Xj ′
n
) with the property that

it has the largest j2-component among all n-adic concepts (B1, . . . , Bn) with the
largest j3-component among those with the largest j4-component, . . ., among
all those with the largest jn-component, satisfying Xi ⊆ Bi, i �= jn. Thus, if
(C1, . . . , Cn) is a concept, then bjn−1,...,j1(Cj ′

n
) = (C1, . . . , Cn).

Proof. Assume, for notational simplicity and without loss of generality, that
jk = k, for all k = 1, . . . , n. From (1) and (2), Xn−1 ⊆ An−1. From (3) then,
Xn−2 ⊆ An−2, and so on, until, finally, from (5), X1 ⊆ A1.

We show, first, that (A1, . . . , An) is an n-adic concept. We have A1 =
A

({2,...,n},1)
{2,...,n} , by (5). Then

A2 ⊆ A
({3,...,n},2,A({2,...,n},1)

{2,...,n} )

{3,...,n} = A
({3,...,n},2,A1)

{3,...,n} ⊆ A
({3,...,n},2,X1)

{3,...,n} = A2,

whence

A2 = A
({3,...,n},2,A1)

{3,...,n} = A
({1,3,...,n},2)
{1,3,...,n} .

Suppose now that

3 ≤ k ≤ n − 1 and Aj = A
(j ′,j)
j ′ , for all j < k.

Then

Ak ⊆ A
({k+1,...,n},k,A(1′,1)

1′ ,...,A
((k−1)′,k−1)
(k−1)′ )

{k+1,...,n} = A
({k+1,...,n},k,A{1,...,k−1})
{k+1,...,n}

⊆ A
({k+1,...,n},k,X{1,...,k−1})
{k+1,...,n} = Ak.

Thus Ak = A
({k+1,...,n},k,A{1,...,k−1})
{k+1,...,n} = A

(k′,k)
k′ and similarly for An.

Suppose, next, that (B1, . . . , Bn) ∈ C(K), with Xi ⊆ Bi, i < n. Then

Bn = B
(n,n′)
n′ = B

(n,n−1,B{n,n−1}′ )
n−1 ⊆ X

(n,n−1,X{n,n−1}′ )
n−1 = An,

so Bn ⊆ An. Set Bn = An. Then

Bn−1 = B
((n−1)′,n−1)
(n−1)′ = B

(n,n−1,B{n,n−1}′ )
n ⊆ A

(n,n−1,X{n,n−1}′ )
n = An−1.

Thus, Bn−1 ⊆ An−1. Set Bn−1 = An−1. Then we get as above that Bn−2 ⊆
An−2. We continue in a similar way up to B3 ⊆ A3 and set B3 = A3. Then we
get B2 ⊆ A2, which gives, finally, that A1 ⊆ B1, since both (A1, . . . , An) and
(B1, . . . , Bn) are n-adic concepts.

For the last statement, since C
({2,...,n−1},n,A1)

{2,...,n−1} = Cn, the first statement forces
bn−1,...,1(Cn′)n = Cn. Now we may proceed to n − 1 and work downwards as
before. ✷
Define, for {j1, . . . , jn} = n, the (jn−1, . . . , j1)-join of n − 1 sets Xi , i �= jn,
of n-adic concepts of K by

∇jn−1,...,j1(Xj ′
n
) = bjn−1,...,j1

(〈⋃
{Ai : A{1,...,n} ∈ Xi} : i �= jn

〉)
. (6)
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3. Complete n-Lattices

An n-ordered set is a relational structure S = 〈S,�1, . . . ,�n〉 for which �i ,
1 ≤ i ≤ n, is a quasi-order on S, such that

⋂
j �=i �j ⊆ �i , for all i = 1, . . . , n,

and, if ∼i = �i ∩ �i , then
⋂n

i=1 ∼i = �S .
It immediately follows that

⋂
j �=i ∼j = �S , for all i = 1, . . . , n. In fact⋂

j �=i ∼j = ⋂
j �=i �j ∩⋂

j �=i �j ⊆ �i∩�i = ∼i . Thus
⋂

j �=i ∼i = ⋂n
i=1 ∼i = �S .

For x ∈ S, let [x]i = {y ∈ S : x ∼i y}. Denote by ≤i the partial order-
ing induced by the quasi-ordering �i on S/∼i . For {j1, . . . , jn} = n, Xi ⊆ S,
i �= jn, an element u ∈ S is a (jn−1, . . . , j1)-bound of Xj ′

n
if u �i xi , for all

xi ∈ Xi , i �= jn. A (jn−1, . . . , j1)-bound is a (jn−1, . . . , j1)-limit of Xj ′
n

if u �jn v,
for all (jn−1, . . . , j1)-bounds v of Xj ′

n
.

PROPOSITION 4. Let S = 〈S,�1, . . . ,�n〉 be an n-ordered set, {j1, . . . , jn} = n
and Xi ⊆ S, i �= jn. Then there exists at most one (jn−1, . . . , j1)-limit u of Xj ′

n
that

is the largest in �j2 among the largest limits in �j3 among . . . among the largest
limits in �jn−1 among the largest limits in �jn . u is called the (jn−1, . . . , j1)-join
of Xj ′

n
and denoted by ∇jn−1,...,j1Xj ′

n
.

Before proving Proposition 4, observe that the given condition φ(u) which the
unique element u in the statement must satisfy can be formally written using
restricted quantification over (jn−1, . . . , j1)-limits of Xj ′

n
as follows

φ(x) =
n−1∧
k=2

[∀xk(∀xk+1(. . .∀xn−2(∀xn−1(xn−2 �jn−1 xn−1)

⇒ xn−3 �jn−2 xn−2) . . . ⇒ xk �jk+1 xk+1) ⇒ x �jk xk)].
Proof of Proposition 4. Suppose there are two u1, u2 (jn−1, . . . , j1)-limits

of Xj ′
n

satisfying the conditions of the hypothesis. Then, since u1, u2 are
(jn−1, . . . , j1)-limits of Xj ′

n
, u1 ∼jn u2. But then, by the hypothesis, u1 �jn−1 u2

and u2 �jn−1 u1, i.e., u1 ∼jn−1 u2. Similarly, we get, in sequence, u1 ∼jn−2

u2, . . . , u1 ∼j2 u2. But
⋂

j �=j1
∼j = �S , whence u1 = u2. ✷

A complete n-lattice is an n-ordered set L = 〈L,�1, . . . ,�n〉 in which the
(jn−1, . . . , j1)-joins ∇jn−1,...,j1Xj ′

n
exist for all {j1, . . . , jn} = n and all (n − 1)-

tuples Xj ′
n

of subsets of S.
By Propositions 2 and 3, the relational structure C(K) derived from an

n-adic context K is an n-ordered set in which ∇jn−1,...,j1(Xj ′
n
) = bjn−1,...,j1(〈

⋃{Ai :
A{1,...,n} ∈ Xi} : i �= jn〉) is always the (jn−1, . . . , j1)-join of Xj ′

n
. Thus, C(K) is

a complete n-lattice.
Next, the three-dimensional examples of Wille [3] are generalized to n dimen-

sions.



300 GEORGE VOUTSADAKIS

Figure 1. The equilateral 4-chain 4C3.

A complete n-chain is a complete n-lattice L = 〈L,�1, . . . ,�n〉, such that
〈L/∼i , ≤i〉, 1 ≤ i ≤ n, is a complete chain. An example is the equilateral n-chain
nCk = 〈nCk,�1, . . . ,�n〉 with

nCk = {(x1, . . . , xn) ∈ {0, . . . , k}n : x1 + · · · + xn = (n − 1)k}
and (x1, . . . , xn) �i (y1, . . . , yn)

if and only if xi ≤ yi, i = 1, . . . , n. nCk is isomorphic to C(Knc
k ) with

K
nc
k = ({1, . . . , k}, . . . , {1, . . . , k}, Y nc

k ) and (x1, . . . , xn) ∈ Y nc
k

if and only if x1 + · · · + xn ≤ (n − 1)k.
A diagram for 3C5 is given in [3, p. 153]. For 4C3 we get the tetrahedron of

Figure 1.
A complete Boolean n-lattice is a complete n-lattice L = 〈L,�1, . . . ,�n〉,

such that 〈L/∼i ,≤i〉, 1 ≤ i ≤ n, is a complete Boolean lattice. An example is
provided by the subsets of a set S. Let Bn(S) = 〈Bn(S),�1, . . . ,�n〉, with

Bn(S) =
{
(X1, . . . , Xn) ∈ P (S)n : X1 ∩ · · · ∩ Xn = ∅
and

⋃
j �=i

Xj = S, for all i ∈ n
}
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Figure 2. The complete Boolean 4-lattice B4({1, 2}).

and (X1, . . . , Xn) �i (Y1, . . . , Yn) if and only if Xi ⊆ Yi , for all i = 1, . . . , n. The
elements of Bn(S) are the n-adic concepts of the n-adic context K

nb
S = 〈S, . . . ,

S, Y nb
S 〉 with Y nb

S = Sn − {(x, . . . , x) : x ∈ S}. B3({1, 2}) is given in [3, p. 154].
Figure 2 depicts B4({1, 2}).

An n-tuple (X1, . . . , Xn) of subsets of an n-ordered set is said to be joined if
there exists an element u with u �i xi , for all xi ∈ Xi , 1 ≤ i ≤ n, i.e., u is a
(jn−1, . . . , j1)-bound of Xj ′

n
, for all {j1, . . . , jn} = n. An n-tuple (x1, . . . , xn) of

elements of an n-ordered set is joined if ({x1}, . . . , {xn}) is joined.

PROPOSITION 5. Let X1, X2, . . . , Xn be subsets of a complete n-lattice. Then
(X1, . . ., Xn) is joined if and only if (x1, . . . , xn) is joined, for all xi ∈Xi , 1 ≤ i ≤n.
In particular, if (X1, . . . , Xn) is joined, then ∇1,2,...,n−1Xn′ �i xi , for all xi ∈ Xi ,
1 ≤ i ≤ n.

Proof. If (X1, . . . , Xn) is joined, then it is obvious that (x1, . . . , xn) is joined,
for all xi ∈ Xi, 1 ≤ i ≤ n.

Suppose, conversely, that (x1, . . . , xn) is joined, for all xi ∈ Xi, 1 ≤ i ≤ n.
Let u be such that u �i xi , 1 ≤ i ≤ n. Then u �1 ∇2,...,n(x2, . . . , xn) and,
thus, x1 �1 ∇2,...,n(x2 . . . , xn). Hence ∇2,...,n(x2, . . . , xn) is a (1, 3, . . . , n)-bound
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for X1, x3, . . . , xn. Since ∇1,3,...,n(X1, x3, . . . , xn) is a (1, 3, . . . , n)-limit of
X1, x3, . . . , xn, we get

∇2,3,...,n(x2, . . . , xn) �2 ∇1,3,...,n(X1, x3, . . . , xn).

Now ∇1,3,...,n(X1, x3, . . . , xn) is a (1, 2, 4 . . . , n)-bound of X1, X2, x4, . . . , xn,
whence ∇1,2,4,...,n(X1, X2, x4, . . . , xn) being a (1, 2, 4, . . . , n)-limit, we get

∇1,3,...,n(X1, x3, . . . , xn) �3 ∇1,2,4,...,n(X1, X2, x4, . . . , xn).

Continue until

∇1,...,n−2,n(X1, . . . , Xn−2, xn) �n ∇1,...,n−1(X1, . . . , Xn−1).

But then

xn �n ∇1,...,n−2,n(X1, . . . , Xn−2, xn) �n ∇1,...,n−1(X1, . . . , Xn−1)

and the assertion follows. ✷

4. The Basic Theorem of n-adic Concept Analysis

The n-adic concepts of an n-adic context K = (K1, . . . , Kn, Y ) form a complete
n-lattice with respect to component-wise defined quasi-orders. C(K) is the concept
n-lattice of the n-adic context K. The Basic Theorem of Triadic Concept Analysis
of Wille [3] states that every complete 3-lattice is isomorphic to a concept 3-lattice
of a suitable 3-adic context. In this section the analog of the Basic Theorem of
Triadic Concept Analysis is proved for n-adic contexts. Namely, it is shown that
every complete n-lattice is isomorphic to the concept n-lattice of a suitable n-adic
context.

Let L = 〈L,�1, . . . ,�n〉 be a complete n-lattice. The set of all order filters
of 〈L,�i〉 is denoted by Fi(L), 1 ≤ i ≤ n, where an order filter of 〈L,�i〉 is a
subset F ⊆ L such that x ∈ F and x �i y imply y ∈ F . A principal filter of
〈L,�i〉 is defined by [x)i = {y ∈ L : x �i y}. An X ⊆ Fi(L) is called i-dense
with respect to L if each principal filter of 〈L,�i〉 is the intersection of some order
filters from X. The principal filter generated by the n-adic concept (A1, . . . , An) in
(C(K),�i) equals

⋂
ai∈Ai

{(B1, . . . , Bn) ∈ C(K) : ai ∈ Bi} ∈ Fi(C(K))

and, therefore, if

κi(ai) = {(B1, . . . , Bn) ∈ C(K) : ai ∈ Bi}, ai ∈ Ki,

then κi(Ki) is an i-dense set of order filters of (C(K),�i), 1 ≤ i ≤ n.
The proof of the basic theorem of n-adic concept analysis follows mutatis mu-

tandis the proof of the Basic Theorem of Triadic Concept Analysis. It is only
included here for the sake of completeness.
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THEOREM 6. Let K = (K1, . . . , Kn, Y ) be an n-adic context. Then C(K) is
a complete n-lattice for which the (jn−1, . . . , j1)-joins ({j1, . . . , jn} = n) are de-
scribed by

∇jn−1,...,j1Xj ′
n

= bjn−1,...,j1

(〈⋃
{Ai : (A1, . . . , An) ∈ Xi} : i �= jn

〉)
.

In general, a complete n-lattice L = 〈L,�1, . . . ,�n〉 is isomorphic to C(K) if and
only if there exist mappings κ̃i: Ki → Fi (L), 1 ≤ i ≤ n, such that κ̃i(Ki) is i-dense
with respect to L and A1 × · · · × An ⊆ Y if and only if

⋂n
i=1

⋂
ai∈Ai

κ̃i(ai) �= ∅,
for all Ai ⊆ Ki, 1 ≤ i ≤ n. In particular L ∼= C(L, . . . , L, YL), with YL =
{(x1, . . . , xn) ∈ Ln : (x1, . . . , xn) is joined.}.

Proof. The first assertion follows from Proposition 3.
Let φ: C(K) → L be a complete n-lattice isomorphism. For i ∈ n, define

κ̃i(ai) = φ(κi(ai)), for all ai ∈ Ki . Since κi(Ki) is i-dense with respect to C(K),
κ̃i(Ki) is i-dense with respect to L. Furthermore, A1 × · · · ×An ⊆ Y if and only if⋂n

i=1

⋂
ai∈Ai

κi(ai) �= ∅ if and only if
⋂n

i=1

⋂
ai∈Ai

κ̃i(ai) �= ∅.
Conversely, let κ̃i: Ki → Fi(L), 1 ≤ i ≤ n, be maps satisfying the hypothesis.

Let ψ : L → P (K1) × · · · × P (Kn) be given by ψ(x) = (Ax
1, . . . , A

x
n) with

Ax
i = {ai ∈ Ki : x ∈ κ̃i(ai)}, 1 ≤ i ≤ n. Since

[x)1 ∩ · · · ∩ [x)n = {x} and [x)i =
⋂
ai∈Ax

i

κ̃i(ai)

by i-density, we get
⋂n

i=1

⋂
ai∈Ax

i
κ̃i(ai) = {x}. Thus, by the second property,

Ax
1 × · · · × Ax

n ⊆ Y . Now let Âx
n = (Ax

1 × · · · × Ax
n−1)

(n′,n). Then Ax
1 × · · · ×

Ax
n−1 × Âx

n ⊆ Y , whence
⋂

a1∈Ax
1

κ̃1(a1) ∩ · · · ∩
⋂

an−1∈Ax
n−1

κ̃n−1(an−1) ∩
⋂

an∈Âx
n

κ̃n(an) �= ∅.

Since Ax
n ⊆ Âx

n, we get that

n−1⋂
i=1

⋂
ai∈Ax

i

κ̃i (ai) ∩
⋂

an∈Âx
n

κ̃n(an) = {x},

whence Âx
n = Ax

n and, similarly, for i = 1, 2, . . . , n − 1. Thus ψ(x) ∈ C(K).
ψ preserves �1, . . . ,�n. Now, if (A1, . . . , An)∈C(K), consider x ∈⋂n

i=1

⋂
ai∈Ai

κ̃i(ai). Then (A1, . . . , An) = ψ(x), i.e., ψ is surjective. But,
as before,

⋂n
i=1

⋂
ai∈Ai

κ̃i(ai) = {x}, whence ψ is also injective. ψ−1 also preserves
�1, . . . ,�n. Thus ψ is an isomorphism.

To show that L ∼= C(L, . . . , L, YL), define κ̃i: L → Fi(L) by

κ̃i(x) = [x)i , 1 ≤ i ≤ n, x ∈ L.
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Then κ̃i(Ki) is i-dense with respect to L. Let A1 × · · · × An ⊆ YL, with A1, . . . ,

An ⊆ L. Then, by Proposition 5, (A1, . . . , An) is joined. Now the second condition
guaranteeing L ∼= C(L, . . . , L, YL) is satisfied. ✷
Finally, it is not difficult to show, following [3], that the following analogs of
propositions 6 and 7 of [3] hold for n-adic contexts.

PROPOSITION 7. Let (P,≤) be a poset with smallest element 0 and greatest
element 1 and

Y = {(x1, . . . , xn) ∈ Pn : 0 �= x1 ≤ x2 = x3 = · · · = xn}.
Then (P,≤) ∼= (C(P, . . . , P, Y )/∼1,≤1).

PROPOSITION 8. Let (Li,≤i), 1 ≤ i ≤ n − 1, be complete lattices and

Y = {(x1, . . . , xn−1, (y1, . . . , yn−1)) ∈
L1 × · · · × Ln−1 × (L1 × · · · × Ln−1) : 0 �= xi ≤ yi, 1 ≤ i ≤ n − 1}.

Then

(Li,≤i) ∼= (C(L1, . . . , Ln−1, (L1 × · · · × Ln−1), Y )/∼i ,≤i),

1 ≤ i ≤ n − 1.

5. An Open Problem

It would be very interesting to investigate whether n-lattices may obtained from
complete n-lattices in the same way as trilattices are obtained from complete tri-
lattices in [1] and discover equations that characterize n-lattices analogous to the
equations of Biedermann ([1], theorems 3.1 and 4.1).
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